ANALYSIS OF CONSUMER TRENDS IN THE RESTAURANT BUSINESS DURING SOCIO-POLITICAL CHALLENGES USING PREDICTIVE ANALYTICS

Keywords: analytics, business models, loyalty program, logistics centers, consumers, machine learning, technologies

Abstract

The article is a study on the impact of socio-political challenges on the restaurant business, with an emphasis on the use of predictive analytics to adapt to new conditions. The impact of the war on the physical infrastructure of the restaurant business in Ukraine has been examined, specifically the destruction of buildings, transport highways, and logistics centers, which have complicated access to raw materials and supplies. It is substantiated how population migration has changed local markets, causing a reduction in the customer base in some regions and oversaturation in others, creating additional challenges for restaurants. The economic instability leading to reduced consumer spending and changing priorities has been studied. It is noted that consumers have become more focused on basic needs and saving money, with an increasing popularity of fast food and inexpensive establishments, as well as a demand for healthy food. It is mentioned that restaurants are adapting to new conditions by implementing promotions, discounts, and loyalty programs. The importance of predictive analytics for adapting to changes in consumer trends during socio-political challenges, particularly the war, is discussed. The use of modern technologies such as machine learning and big data analysis for effectively responding to dynamic market conditions by restaurants is substantiated. The significance of various data, including sales data, customer behavior, macroeconomic indicators, and socio-demographic characteristics, has been studied. Algorithms for predicting changes in consumer behavior, including classification algorithms, regression models, clustering, time series analysis, and statistical models, have been analyzed. It is determined that the application of these technologies helps restaurants adapt their marketing strategies, forecast sales, and improve the quality of customer service under difficult conditions. The study also examines how the results of predictive analytics are used for decision-making in restaurants, including menu planning, inventory management, marketing campaigns, and process optimization. Adaptation to changes caused by the war, including the implementation of new business models (cloud kitchens, mobile restaurants), changing marketing strategies, and optimizing operational processes, is considered.

References

Балацька Н.Ю. Ресторанний бізнес в умовах пандемії коронавірусу: проблеми та напрями трансформації моделей розвитку. Інфраструктура ринку. 2020. Вип. 42. С. 117–122.

Івашина Л., Бишовець Л. Воєнний стан: особливості організації готельно-ресторанного бізнесу на Черкащині. Інновації та технології в сфері послуг і харчування. 2022. № 2 (6). С. 5–8.

Ковтуненко Ю.В., Ольшевська Д.О., Алєксєєнко А.А., Савков Е.А. Особливості використання інноваційних технологій за сучасних умов у готельному та ресторанному бізнесі. Бізнес Інформ. 2020. No. 12. C. 195–201.

Полотай Б.Я., Жмур-Клименко Б.В. Ресторанний бізнес під час війни. Індустрія туризму і гостинності в Центральній та Східній Європі. 2022. № 7. С. 37–42.

Економічна стійкість під час війни доходи, зайнятість та соціальна допомога в Україні квітень 2024 року: веб-сайт. URL: https://dtm.iom.int/sites/g/files/tmzbdl1461/files/reports/Economic%20Resilience%20in%C2%A0Wartime_UKR.pdf (дата звернення: 05.07.2024).

Зіньцьо Ю., Даниленко М. аналіз тенденцій розвитку маркетингової цінової політики в ресторанному бізнесі. Економіка та суспільство. 2023. № 58. DOI: https://doi.org/10.32782/2524–0072/2023–58–32 (дата звернення: 04.07.2024).

Зміни кількості закладів в Україні під час війни: веб-сайт. URL: https://restaurant-consulting.com.ua/uk/zmini-kilkosti-zakladiv-v-ukraini-pid-chas-vijni (дата звернення: 06.07.2024).

Турчиняк М., Примак А. Вплив пандемії covid – 19 на готельно-ресторанну індустрію україни. Економіка та суспільство. 2023. № 47. DOI: https://doi.org/10.32782/2524–0072/2023–47–29 (дата звернення: 04.07.2024).

Mariani M., Baggio R., Fuchs M., Höepken W. Business intelligence and big data in hospitality and tourism: A systematic literature review. International Journal of Contemporary Hospitality Management. 2019. Vol. 30. No. 12. Рp. 3514–3554.

Exponential Smoothing: A Beginner’s Guide to Getting Started: веб-сайт. URL: https://www.influxdata.com/blog/exponential-smoothing-beginners-guide/ (дата звернення: 06.07.2024).

Balatska N. Iu. (2020) Restorannyi biznes v umovakh pandemii koronavirusu: problemy ta napriamy transformatsii modelei rozvytku [Restaurant business in the conditions of the coronavirus pandemic: problems and directions of transformation of development models]. Infrastruktura rynku – Market infrastructure, vol. 42, рр. 117–122.

Ivashyna L., Byshovets L. (2022) Voiennyi stan: osoblyvosti orhanizatsii hotelno-restorannoho biznesu na Cherkashchyni [Martial law: peculiarities of hotel and restaurant business organization in Cherkasy region]. Innovatsii ta tekhnolohii v sferi posluh i kharchuvannia – Innovations and technologies in the field of services and food, vol. 2, рр. 5–8.

Kovtunenko Yu. V., Olshevska D. O., Alieksieienko A. A., Savkov E. A. (2020) Osoblyvosti vykorystannia innovatsiinykh tekhnolohii za suchasnykh umov u hotelnomu ta restorannomu biznesi [Peculiarities of the use of innovative technologies under modern conditions in the hotel and restaurant business]. Biznes Inform – Business Inform, vol. 12, рр. 195–201.

Polotai B. Ya., Zhmur-Klymenko B. V. (2022) Restorannyi biznes pid chas viiny [Restaurant business during the war]. Industriia turyzmu i hostynnosti v Tsentralnii ta Skhidnii Yevropi – Tourism and hospitality industry in Central and Eastern Europe, vol. 7, рр. 37–42.

Ekonomichna stiikist pid chas viiny dokhody, zainiatist ta sotsialna dopomoha v Ukraini kviten 2024 roku [Economic Resilience during Wartime Income, Employment and Social Assistance in Ukraine April 2024] Available at: https://dtm.iom.int/sites/g/files/tmzbdl1461/files/reports/-Economic%20Resilience%20in%C2%A0Wartime_UKR.pdf (accessed July 5, 2024).

Zintso Yu., Danylenko M. (2023) Аnaliz tendentsii rozvytku marketynhovoi tsinovoi polityky v restorannomu biznesi [Аnalysis of trends in the development of marketing price policy in the restaurant business]. Ekonomika ta suspilstvo – Economy and society, vol. 58. DOI: https://doi.org/10.32782/2524–0072/2023–58–32 (accessed July 4, 2024).

Zminy kilkosti zakladiv v Ukraini pid chas viiny [Changes in the number of institutions in Ukraine during the war]. Available at: https://restaurant-consulting.com.ua/uk/zmini-kilkosti-zakladiv-v-ukraini-pid-chas-vijni (accessed July 6, 2024).

Turchyniak M., Prymak A. (2023) Vplyv pandemii covid – 19 na hotelno-restorannu industriiu Ukrainy [Impact of the covid – 19 pandemic on the hotel and restaurant industry of Ukraine]. Ekonomika ta suspilstvo – Economy and society, vol. 47. DOI: https://doi.org/10.32782/2524–0072/2023–47–29 (accessed July 4, 2024).

Mariani M., Baggio R., Fuchs M., Höepken W. (2019) Business intelligence and big data in hospitality and tourism: A systematic literature review. International Journal of Contemporary Hospitality Management, vol. 30, no. 12, рp. 3514–3554.

Exponential Smoothing: A Beginner’s Guide to Getting Started. Available at: https://www.influxdata.com/blog/exponential-smoothing-beginners-guide/ (accessed July 6, 2024).

Article views: 16
PDF Downloads: 13
Published
2024-11-04
How to Cite
Budzin, D., & Konarivska, O. (2024). ANALYSIS OF CONSUMER TRENDS IN THE RESTAURANT BUSINESS DURING SOCIO-POLITICAL CHALLENGES USING PREDICTIVE ANALYTICS. Via Economica, (6), 7-13. https://doi.org/10.32782/2786-8559/2024-6-1
Section
Статті